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Phase density method: A microscopic description of the gas of neutral particles
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This paper is devoted to the construction of local microscopic equations describing the evolution of the gas
that is treated as a system of a finite numberN of point particles placed in a given fixed volume of space. It is
assumed that, given an arbitrary motion of the particles, the state of each of them is characterized by a sets
(1<s,`) of dynamic nonzero variables. Such a set represents a point in some 3s-dimensional phase space.
The notion of thes-th order phase density is introduced, and it is shown that the hierarchy of densities satisfies
an infinite system of coupled integrodifferential equations. The structure of the equations suggests the condi-
tions, under which they can be transformed to a closed system ofp differential equations: a functional relation
between the (p11)th and the otherp dynamic variables must be specified. For the gas of neutral particles,
such a relation is found from ordinary equations of motion of particles (p52). However, the acceleration of an
individual particle turns out to be a function not only of its coordinates and velocity but also of the coordinates
and velocity of the other (N21) particles of the system having the role of the field sources. The presence of
an additional coupling leads to the ‘‘splitting’’ of the second of the two remaining evolution equations into a
closed system ofN equations for so-called multiparticle phase densities. The physical meaning of these
equations and their possible implications for the kinetic theory of gases are discussed. It is stressed that a
similar system of microscopic equations can be constructed for any microscopic quantities of the system of
particles under consideration.
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I. INTRODUCTION

The phase density method was first suggested in a p
of Klimontovich concerned with a local microscopic descr
tion of the plasma treated as a system of a large numberN
charged point particles that move according to the kno
law in a given volume of space@1#. The method is a tech
nique for constructing the equation for microscopic pha
density, which is a local characteristic of the system. It a
worked well for describing systems of such complicated
jects as atoms, molecules, and the like, which were rega
as bound states of point particles of a different sort@2#. The
importance of such equations lies in the fact that kine
equations of a general form can be constructed using t
@2–7#.

It is known that each particle of the system has the role
the object acted upon by the fields of the other (N21) par-
ticles and of external~relative to the system! sources, and the
role of the field source for the other particles at a time.
obtain the closed microscopic equation, Klimontovich us
the ‘‘self-action’’ approximation implying that a change
particle momentum is possible under the action not only
external~relative to it! fields but also of its own field. Within
the context of the microscopic description of a single syst
of particles, such an approximation is physically meaningl
since it introduces divergent terms into the theory@7,8#.
Knowing that such systems are nonexistent in nature, Kl
ontovich stresses that his approximation has a technical c
acter and that, when the occasion requires, the contribu
that is determined by self-action, can always be excluded
an illustration, he even develops a ‘‘correct,’’ now nonclos
equation, but right there everything ends@2#.

In spite of the approximate character of the microsco
equation, Klimontovich and other authors managed to obt
1063-651X/2001/64~4!/041201~8!/$20.00 64 0412
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on its basis, macroscopic results in agreement with univ
sally known ones, and they took it as circumstantial evide
for the validity of the equation itself@2,6–8#. Yet this fact in
no way was associated with the approximation itself:
analysis of their calculations shows that the application
the procedure of averaging the microscopic equation ove
ensemble, involving the method of moments and various
sumptions@2#, leads to an implicit compensation of the co
tribution determined by self-action. Nevertheless, the idea
switching over from microscopic to kinetic equations see
quite attractive. It is necessary merely to derive ‘‘correc
microscopic equations and to point out the rule of such
switchover. In this paper, an attempt is made to solve
former of these problems.

This treatment starts from the one-component gas wh
particles move in an arbitrary fashion in a given volume
space. Such a motion will be characterized by an infin
number of dynamic variables, which necessitates introduc
a notion of the 3s-dimensional phase space (1<s,`), and
of sth-order phase density. The use of an extended ph
density method, based on such properties of particles as
point character and the constancy of their number in the s
tem, leads to an infinite system of coupled integrodifferen
equations for phase densities. Analysis of the structure s
gests the condition for ‘‘terminating’’ them and obtaining
closed system ofp differential equations: the presence of
coupling between the (p11)th and the otherp dynamic vari-
ables. The explicit form of the coupling is determined
each particular problem.

For the neutral gas, such a coupling is defined by
ordinary equation of motion (p52). In this case, the accel
eration of an individual particle depends not only on its d
namic variables, as is required by the termination conditi
but also on the dynamic variables of the other (N21) par-
©2001 The American Physical Society01-1
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ticles. The presence of an additional coupling leads to
‘‘splitting’’ of the second of the two remaining evolutio
equations into a closed system ofN equations for so-called
multiparticle phase densities. Such a system of (N11) dif-
ferential equations describes the microscopic evolution o
single system ofN particles rather than of their ensemble.

II. GENERAL SCHEME

Let there be, in a fixed volume of spaceV* , a sufficient
amount of gas consisting of a constant numberN of moving
particles of the same sort~results are easily generalized to th
case of a multicomponent gas!. The sufficiency implies tha
the linear size of the volume is much larger than the m
distance between particles. The constancy of the numbe
particles signifies that the gas supports only those phys
processes, which as time progresses, (a) do not chang
nature of particles, and (b) confine them to a given volum
If, in this case, (c) the mean distance between particle
much larger than their diameter, then such a gas may
represented as a system of point particles. Their motio
described by methods of classical mechanics@9,10#.

In the dynamic approach, the state of an arbitraryi th par-
ticle at the timet is determined by the values of two dynam
variables: the radius vectorr i(t) and the velocityvi(t), (i
51̄,N̄). It is obvious that they are not independent quantit
@2#. By specifying the state of all particles at the initial tim
t0 and integratingN equations of motion, it is possible, i
principle, to calculate the radius vectors of particles for ev
subsequent instant of time. The solution of this problem w
also make it possible to consider the evolution of such ph
cal quantities as the momentum of the system, its kin
energy, etc., which represent the specified functions of
namic variables ofN particles.

The local approach treats the properties not of the en
system of particles but only of those that at the timet (t
.t0) are in the volumeV (VPV* ). The corresponding~lo-
cal! physical quantity then represents a limited~by the vol-
ume V) integral over the coordinate spacer of the local
microscopic function. Functions of this kind are determin
by the condition that in the limitV→V* the local physical
quantity coincides with the quantity obtained in the dynam
approach. For local functions, a method of constructing
ferential equations, the phase density method, is known@2#.
The evolution of local physical quantities is studied either
the basis of their determination~by substituting into it the
solution of the microscopic equation! or through a direct
construction and solution of differential equations for the
quantities themselves.

The simplest local function is represented by the mic
scopic particles number density,n(r ,t), specified in a con-
tinuous space of coordinates by the condition

E
V*

n~r ,t !dr5N, ~1!

i.e., the integral ofn(r ,t) over the entire volume of the sys
tem is equal to a total number of particles in it, heredr
5drxdrydrz . The number of particles in the volumeV at the
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time t is also equal to the integral ofn(r ,t) taken over this
volume, however. It is obvious that, because of the conti
ous motion of the particles, the number of particles in t
volume will be different at different instants of time.

To obtain the equation forn(r ,t), the density is repre-
sented as the sum of the following Diracd functions overN
particles of the system:

n~r ,t ![(
i 51

N

d„r2r i~ t !…, ~2!

where d„r2r i(t)…5d„r x2r xi(t)…d„r y2r yi(t)…d„r z2r zi(t)….
Such a representation satisfies the condition~1!; it should be
noted, however, that its some terms there can be infin
This means that in the representation~2! the quantityn(r ,t)
is not a physical quantity: it belongs to the class of so-cal
generalized functions. Such functions reflect some pre
signed properties of the representing quantity and are in
duced with the purpose of constructing the respective dif
ential equations, following the known recipes. In the pres
case this implies differentiating the expression~2! with re-
spect to the timet as a composite~time-dependent in terms
of dynamic variables! function, in view of the properties o
the d function and the conditionN5const. The terms of the
resulting intermediate equation are then expressed eithe
terms of the quantityn(r ,t) itself or in terms of some othe
generalized function.

Note that to construct the equation, Klimontovich us
the microscopic phase densityN(r ,v,t) specified in a con-
tinuous space of coordinates and velocities,r and v ~which
he called the six-dimensional phase space! by the expression,

N~r ,v,t ![(
i 51

N

d„r2r i~ t !…d„v2vi~ t !…. ~3!

This choice is associated with the assumption that it is p
sible to express in terms of the quantityN(r ,v,t) the micro-
scopic densities of almost all known physical quantities.
order for the resultant internal force to be included in th
number, the self-action approximation was used, the me
ing of which has already been discussed above. Eventu
the resulting differential equation forN(r ,v,t) becomes
closed. This study will show that there is no need for such
approximation and that a consistent application of the ph
density method permits us to construct microscopic eq
tions. Furthermore, there naturally arise the notions of mic
scopic densities of different physical quantities, and diff
ential equations corresponding to them.

A. The coupling equation for phase densities

It will be assumed that the motion of particles in the sy
tem under consideration proceeds in an arbitrary fashion,
the laws of their motion are not predetermined. This me
that for anyi th particle (i 51̄,N̄) the time derivatives of its
radius vector from the first to infinite orders will be nonze
time functions. We write them as the followings vector
quantities (s being an integer, and 1<s,`):
1-2
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q1i~ t !5r i~ t !, q2i~ t !5vi~ t ![
dr i~ t !

dt
, . . . , qsi~ t !

5
ds21r i~ t !

dts21
, ~4!

and we call them the dynamic variables of thei th particle
@2#. It is obvious that they are not independent quantiti
The first subscript number means the variable number,
the second number corresponds to the particle numbe
would appear reasonable that the state of an individual
ticle must now be characterized not by two dynamic va
ables but by the entire set ofs dynamic variables,

Qsi~ t !5@q1i~ t !, q2i~ t !, . . . , qsi~ t !#. ~5!

It will be shown later in the text that, depending on the la
of motion selected, the numbers can assume different finite
values.

Let us imagine mentally some 3s-dimensional continuous
space in which at the timet one particular point that is dif-
ferent from the other points, will correspond to each of theN
sets of the dynamic variables of Eq.~5!. Call this space the
phase space, and let the followings vectors be used as it
independent variables

q15r , q25v, q3 , . . . , qs , ~6!

where the subscript number means the phase variable n
ber. It is obvious that the phase and dynamic variables w
the same number have the same physical dimensions. In
connection, the first two vectors in Eq.~6! are shown coin-
cident with the variables of an ordinary six-dimension
phase space@1#. With the exception of the variabler , the
phase variables of Eq.~6! vary from 2` to 1`. ~In the
relativistic case this exception refers also to the variablev; its
values vary from2c to 1c, wherec is the velocity of light!.
Let us designate an arbitrary point of the 3s-dimensional
phase space by the set

Qs5~q1 , q2 , . . . , qs!, ~7!

where the subscript number ofQ indicates the number o
phase variables. By analogy with Eqs.~2! and~3!, we deter-
mine in the 3s-dimensional phase space thes-order phase
density

ns5ns~Qs ,t !5(
i 51

N

d„Qs2Qsi~ t !…, ~8!

whered„Qs2Qsi(t)…5) l 51
s d„ql2ql i (t)…. Then the quanti-

tiesn(r ,t) andN(r ,v,t) are said to be the phase densities
the first and second orders. All phase densities are local fu
tions since they satisfy the condition

E nsdQs[E
V*
E

2`

`

•••E
2`

`

nsdq1•••dqs5N. ~9!
04120
.
nd
It
r-
-

m-
th
his

l

f
c-

Next we write the following useful coupling between pha
densities of different orders (r being an integer, and 1<r
,s):

nr5E nsdqr 11•••dqs . ~10!

We start the construction of the equations for phase d
sities from the quantityn1. By taking a time derivative with
respect to its both parts and using the known property
differentiation of thed function, we obtain the following
intermediate equation:

]n1

]t
52

]

]q1
(
i 51

N

q2i~ t !d„q12q1i~ t !…. ~11a!

The presence of the vectorq2i(t) under the summation sign
does not permit the right-hand side~RHS! of Eq. ~11a! to be
expressed in terms of the quantityn1 itself. However, if the
definition~8! at s52 and the other property of thed function

q2i~ t !5E
2`

`

q2d„q22q2i~ t !…dq2 ,

are taken into account, then equations~11a! may be written
as

]n1

]t
52

]

]q1
E

2`

`

q2n2dq2 . ~11b!

This integrodifferential equation is nonclosed: its RHS
volves the densityn2, for its determination it is necessary t
construct a new equation. It is obvious that this and all ot
subsequent equations are nonclosed. A general equatio
the s-order phase density will have the form

S ]

]t
1(

l 52

s

ql

]

]ql 21
D ns52

]

]qs
(
i 51

N

q(s11)i~ t !d„Qs2Qsi~ t !…

~12a!

52
]

]qs
E

2`

`

qs11ns11dqs11 ,

~12b!

where 2<s,` @whens51 we have Eqs.~11!#.
Equations~11b! and~12b! have an important property: a

their terms represent different combinations of phase v
ables and phase densities only. The system with an infi
number of ‘‘coupled’’ integrodifferential equation~12b!
does not permit us to use them in solving applied proble
It is necessary to point out a method enabling us to ‘‘term
nate’’ the sequence of these equations. To do so, first
note the existing obvious connection between the numbe
Eq. ~12b! and the number of dynamic variables. Note al
that in real media the motion of particles is not an arbitra
one: it is always limited to some extent. Consequently,
establishing the character of limitations for a particular s
tem of particles, it is possible to find the method of termin
tion of Eq. ~12b! and to obtain a closed system of equation
1-3
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VALERY V. YEVSTAFIEV PHYSICAL REVIEW E 64 041201
An important role will be played by the (s11)th dynamic
variable of an arbitraryi th particle involved in the RHS o
Eq. ~12a!.

Assume that the particles in the system are moving
such a manner that their dynamic variables with numb
higher than thepth are always zero, i.e.,q(p11)i50 (i
51̄,N̄). Upon substituting this into the RHS of Eq.~12a!, we
obtain a closed system ofp equations. The last of them turn
out to have its RHS equal to zero. It is known that und
certain conditions and at the specified initial value of t
p-order phase density, this equation can, in principle,
solved. The resulting expression fornp can be used, with the
help of the relation~10!, to determine smaller-order phas
densities. However, there are situations where it is still n
essary to successively solve all the remaining (p21) equa-
tions. To do this, the resulting value ofnp is substituted into
the RHS of the preceding (p21)th equation, and this is
solved fornp21. Its solution, in turn, givesnp21, which is
substituted into the (p22)th equation, and so forth. It shoul
be noted, however, that the case of the motion of partic
under consideration exists almost nowhere; therefore,
turn our attention to a more general method of obtainin
closed system of equations.

B. The evolution equation for phase densities

Assume that the motion of particles in the system ob
such a physical law that may be written as the followi
relation between the dynamic variables of an arbitraryi th
particle:

q(p11)i~ t !5f~Qpi ,t !, i 51̄,N̄. ~13!

Noteworthy here is an explicit time dependence of the RH
Upon substituting Eq.~13! into Eq. ~12a! and taking advan-
tage of the property

f~Qpi ,t !d„Qp2Qpi~ t !…5f~Qp ,t !d„Qp2Qpi~ t !…

~it is verified by a direct integration over the phase volume
the system!, we arrive at the following closed differentia
equation:

S ]

]t
1(

l 52

p

ql

]

]ql 21
D np52

]

]qp
„f~Qp ,t !np…. ~14!

Since the coefficients of the equation represent the kno
functions of phase variables, this equation can, in princip
be solved. Smaller-order phase densities are then obta
using the relation~10!.

This does not complete the microscopic local descript
of the system of particles: it is still necessary to consider
above-mentioned problem of introducing into the theo
other local functions and of constructing the evolution eq
tions for them. One way to solve this problem is as follow
Since Eqs.~12b! involve integrals of the same type, the
may be represented as the following functions:
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E
2`

`

qknkdqk5Uk~Qk21 ,t !, ~15!

where 2<k<p. It is obvious that the vectorUk is a local
function and represents the density of quantityqk in the
3(k21)-dimensional phase space. Let the symbola51,2,3,
involved on the lower right of the vector, designate its C
tesian components. Then, by multiplying eachkth of the (p
22) Eq.~12b!, as well as Eq.~14! by the quantity (qk)a and
integrating overqk , we obtain the following system ofp
microscopic equations:

S ]

]t
1 (

l 52

p21

ql

]

]ql 21
D ~Up!a1

]

]qp21
E

2`

`

qp~qp!anpdqp

5E
2`

`

@ f ~Qp ,t !#anpdqp , ~16a!

S ]

]t
1 (

l 52

k21

ql

]

]ql 21
D ~Uk!a1

]

]qk21
E

2`

`

qk~qk!ankdqk

5E
2`

`

~Uk11!adqk , ~16b!

]n1

]t
5

]U2

]q1
. ~16c!

When deriving Eq.~16!, we used the following importan
property of the integrals:

E
2`

` ]

]qk
@C~Qk ,t !nk#dqk50, ~17!

where the vectorC(Qk ,t) is an arbitrary function of phase
variables. Note that the system~16! involves terms that do
not contain the quantityUk . They arise due to the fact tha
the relation ~15! does not permit the densitiesnk to be
uniquely expressed in terms ofUk . For this reason, when i
is necessary to find the expressions forUk , it is more con-
venient to solve first the system of equations for phase d
sities and then to use Eq.~15!.

There exists an alternative method of overcoming
above-mentioned problem of introducing new local fun
tions. Using Eq.~8!, we represent the quantityUk as

Uk5(
i 51

N

qkid„Qk212Q(k21)i~ t !… ~18a!

5uk~Qk21 ,t !nk21 , ~18b!

where 2<k<p. We can verify that by applying the phas
density method to Eq.~18a!, we obtain exactly the system o
equations~16!. It is easy to see that by using this method it
possible to construct microscopic equations for any lo
function composed of phase variables and of the phase
sities. By representing the integral of Eq.~15! as Eq.~18b!, it
is possible to introduce into consideration a further n
quantityuk(Qk21 ,t), having the meaning of the mean valu
1-4
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PHASE DENSITY METHOD: A MICROSCOPIC . . . PHYSICAL REVIEW E 64 041201
of the variableqk in the 3(k21)-dimensional phase spac
Let us call it the microscopic value of the quantityqk . In the
particular case wherek52, substitution of Eq.~18b! into Eq.
~16c! gives the equation coinciding in its form with the ma
roscopic continuity equation. The quantityu2(Q1 ,t) will
have the role of the microscopic value of the velocityq2 in
this equation.

III. THE GAS OF NEUTRAL PARTICLES

In real gases the motion of particles is almost always n
relativistic and therefore obeys a classical law of mot
@2,9,10#. For an arbitraryi th particle (i 51̄,N̄) of the one-
component gas, it is written as

miq3i~ t !5Fi~ t !, ~19!

whereq3i(t) is acceleration, andmi5m is the mass of the
i th particle. The vectorFi(t) represents the force arisin
when thei th particle~at the timet) is acted upon by the tota
field produced both by (N21) particles surrounding this
particle and by external~relative to the system! sources. Re-
call that the motion of the particles will be nonrelativist
and the particles themselves will remain point objects wh
the magnitude of each field acting on them is sufficien
small. The superposition principle hold for such fields: t
action of the total field causes the same change in par
momentum as does the vector sum of all individual fiel
The same holds also true for the forces

Fi~ t !5F0i~ t !1 (
j 51

( j Þ i )

N

Fi j ~ t !. ~20!

HereF0i(t) andFi j (t) represent the actions of the resulta
field of external sources, and of the field produced by thej th
particle, respectively. The conditioniÞ j implies that thei th
particle of the system cannot be a source of the field
itself. In emphasizing this role, we shall call the partic
whose parameters are related by Eq.~19!, the peculiar par-
ticle; with respect to it, all the other (N21) particles repre-
sent sources of internal fields. It should be noted that
selection of the law of motion~13! in the form~19! specifies
the phase space of the system of particles to be
dimensional. This permits us to return to the symbols t
have already been partly used in Sec. II: the vectorsq1 and
q2 are replaced byr andv and the quantitiesn1 , n2 @see Eq.
~8!# are substituted for byn(r ,t), N1(x,t)5N„r ,v,t… where
x5(r ,v).

In particular problems, the sources of external fields
considered given. This implies that the external result
force may be represented as a radius-vector function of
peculiar particle and of timet ~if external sources produc
time-dependent fields!, F0i(t)5F0„r i(t),t…. The internal
force Fi j (t) for the neutral gas is expressed in terms of
‘‘potential energy of interaction’’F i j (t). In the subsequen
discussion, in the expressions for fields and forces the v
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cal bar will separate the parameters of the peculiar part
and of the source particles. ThenF i j (t)5F„ur i(t)2r j (t)u…
5F„r i(t)ur j (t)…, and

Fi j ~ t !52
]F i j ~ t !

]r i~ t !
5F„r i~ t !ur j~ t !…, ~ iÞ j !. ~21!

Hence it follows that the time dependence of the inter
forces has an implicit character, and the parameters of
source and of the peculiar particle are taken at the same
t. However, with the finite propagation velocity of the field
the time of emission of the field by thej th particle,t j8 must
differ from t by the delay timet2t j8.0. The use oft5t j8 in
the expression~21! is motivated by the short-lived characte
of the fieldF i j (t) when at every instant of time the peculia
particle is acted upon by fields only of several most clos
lying source particles. Furthermore, the delay time will
negligibly small compared with the characteristic time of t
macroscopic processes occurring in the system. It should
noted that the delay times can differ from each other
several times, and this difference does not depend on
velocity of the particles. It is particularly important to tak
this difference into account in the microscopic description
the gas of charged particles acting on one another thro
far-ranging electromagnetic fields. The delay times for th
can also differ considerably.

Thus the acceleration of the peculiar particle depends
only on its dynamic variables, as is required by the condit
~13!, but also on the variables of the other particles of t
system. The presence of an additional coupling does not
mit the results from the preceding section to be used direc
therefore, it is necessary again to invoke the system of eq
tions ~12b!. Using Eq.~19!, we transform it into a system o
two equations

]n~r ,t !

]t
52

]

]rE2`

`

vN1~x,t !dv, ~22a!

S ]

]t
1v

]

]r DN1~x,t !52
]

]v (
i 51

N

q3i~ t !d„x2xi~ t !….

~22b!

We now write Eq.~22b! in the variables of the phase spac
to do this, we represent the force of Eq.~21! as an integral
over the entire volume of the phase space occupied by
system:

Fi j ~ t !5E
V*
E

2`

`

F„r i~ t !ur 8…d„x82xj~ t !…dx8, ~23!

wheredx85dr 8dv8. On substituting into Eq.~22b! the ex-
pression~19!, in view of Eqs.~20!, ~21!, and~23!, we arrive
at the following evolution equation for the densityN1(x,t):

S ]

]t
1v

]

]r
1F0~r ,t !

]

]pDN1~x,t !

52E F~r ur 8!
]N1~x,t !N 1

(x)~x8,t !

]p
dx8. ~24!
1-5
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The integral here is written in the sense of Eq.~23!, p5mv,
and F(r ur 8) stands for the force, with which the field from
the source particle will be acting on some peculiar partic
provided that both of them will be at the pointsr and r 8.

At this point it is necessary to explain that the pointx, like
any other point of the phase space, is chosen arbitra
therefore, at the timet this point may not contain a particle
Nevertheless, Eq.~24! remains valid, although it turns into
usual zero identity. Consequently, the nontrivial meaning
acquired by Eq.~24! only at the point of the phase space,
which at the timet one of N particles will reside. Such a
point will be said to be the peculiar point of the phase sp
and, in this sense, we make the convention that there i
action of the fields on the peculiar point.

Note that under the integral in Eq.~24! we have, together
with N1(x,t), a new quantity

N 1
(x)~x8,t !5N1~x8,t !2d~x2x8!, ~25!

which differs fromN1(x8,t) in that the peculiar pointx is
excluded from it. This imparts to the quantity of Eq.~25! the
meaning of the phase density of the number of sources~for
the pointx) at the pointx8. It is obvious that it is a local
function: the integral

E N 1
(x)~x8,t !dx85N21, ~26!

is equal to the number of sources for the peculiar poinx.
The fact that the quantityN 1

(x)(x8,t) involved in Eq. ~24!
makes it nonclosed; however, the evolution equation
quired for finding this quantity is more conveniently co
structed for the product

N1~x,t !N 1
(x)~x8,t ![N2~x,x8,t !

5 (
i , j 51
( j Þ i )

N

d„x2xi~ t !…d~x82xj~ t !!.

~27!

If only the RHS of Eq.~27! is taken into account, then th
quantityN2(x,x8,t) represents a function that is symmetr
with regard to the permutation of the variablesx andx8. For
this reason, it was labeled as the two-particle phase den
and the quantityN1(x,t) received the name one-partic
phase density@2#.

On the other hand, since in Eq.~24! x is a peculiar point
and the pointx8 belongs in the phase space of sources, th
points have a different physical meaning. This difference
comes obvious if we take into account the nonzero, eve
negligibly small, delay time. In this case the pointsx andx8
become ‘‘tied’’ to the timest and t8, with t.t8. In the sub-
sequent discussion the delay will be neglected; howe
when carrying out a physical interpretation of results o
tained, it should not be omitted. We believe that this rem
is of particular importance in the context of the well-know
problem of the time irreversibility of kinetic and hydrody
namic equations@2,11#. Nevertheless, in obtaining the evo
lution equations for the quantityN2(x,x8,t), the pointsx and
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x8 are formally considered to be two different and indepe
dent peculiar points.@When the occasion requires, the diffe
ence of the timest and t8 may be taken into account in Eq
~24! in the process of integration.# Hence,

S ]

]t
1v

]

]r
1v8

]

]r 8
1F0~r ,t !

]

]p
1F0~r 8,t !

]

]p8
DN2~x,x8,t !

52E F~r ur 9!
]

]p
@N (x)~x9,t !N2~x,x8,t !#dx9

2E F~r 8ur 9!
]

]p8
@N (x8)~x9,t !N2~x,x8,t !#dx9. ~28!

Noteworthy are the similarity of the operators involved in t
left-hand side~LHS! of Eqs. ~24! and ~28!, and the corre-
spondence of their number to the number of peculiar poi
The integrals in Eq.~28! describe the contribution to th
evolution made by the quantityN2(x,x8,t) made by the mu-
tual action of the peculiar pointsx andx8, as well as of the
action of particles from the phase space of sources on th

We now express the bracketed products of phase dens
in terms of a three-particle phase density@cf. Eq. ~27!#

N3~x,x8,x9,t !5 (
i , j ,k51
( j Þ iÞk)

N

d„x2xi~ t !…d„x82xj~ t !…

3d„x92xk~ t !…. ~29!

With a rather unwieldy manipulation we get

N (x)~x9,t !N2~x,x8,t !5N3~x,x8,x9,t !

1d~x92x8!N2~x,x8,t !,

N (x8)~x9,t !N2~x,x8,t !5N3~x,x8,x9,t !

1d~x92x!N2~x,x8,t !.

In view of these expressions, Eq.~28! takes the form

S ]

]t
1v

]

]r
1v8

]

]r 8
1@F0~r ,t !1F~r ur 8!#

]

]p

1@F0~r 8,t !1F~r 8ur !#
]

]p8
DN2~x,x8,t !

52E FF~r ur 9!
]

]p
1F~r 8ur 9!

]

]p8
GN3~x,x8,x9,t !dx9.

~30!

The LHS now involves two terms that take explicitly int
account the contribution of the mutual action of the pecu
pointsx andx8 to the evolution of the quantityN2(x,x8,t).
The RHS retains only those terms that describe the contr
tion from the action~on these points! of the fields from the
remaining (N22) particles of the system. Equation~30!,
like Eq. ~24!, is also nonclosed, but now because of the
1-6
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volvement of the quantityN3(x,x8,x9,t). It is obvious that
the evolution equation for this quantity will contain a fou
particle density, etc. As a result, we get a system of coup
equations for multiparticle phase densities.

The need to distinguish, in the subsequent treatmen
large number of points of the six-dimensional phase sp
induces us to introduce the following designations of
phase variables:

x5x(1), x85x(2), x95x(3), . . . . ~31!

It can be directly verified that the properties of ann-particle
phase density~as a local function! will be defined by the
relation

E Nn~x(1), . . . ,x(n),t !dx(1)
•••dx(n)5

N!

~N2n!!
. ~32!

Hence, when 1<n,N (n being an integer!, the evolution
equation has the form

S ]

]t
1(

l 51

n Fv( l )
]

]r ( l )
1mwn~r ( l ),t !

]

]p( l )G D
3Nn~x(1), . . . ,x(n),t !

52E (
l 51

n

F~r ( l )ur (n11)!
]

]p( l )

3Nn11~x(1), . . . ,x(n11),t !dx(n11), ~33!

where, for sake of evidence, the following notation is intr
duced:

mwn~r ( l ),t !5F0~r ( l ),t !1 (
k51

(kÞ l )

n

F~r ( l )ur (k!, l 51̄,N̄.

~34!

Equation~33! will have a nontrivial meaning ifn equals the
number of peculiar points. The expression~34! represents the
portion of the force, with which an arbitrary peculiar poi
x( l ) at the timet is acted upon by external fields and by fiel
produced by the other (n21) peculiar points. Consequently
the LHS of Eq.~33! involvesn terms that take into accoun
the contribution to the evolution from then-particle density
of the external fields, andn(n21) terms that take into ac
count the mutual action of the peculiar points. Under
integral sign on the RHS of Eq.~33! there remainn terms
that take into account the action on each of then peculiar
points (N2n) exerted by the particles from the phase spa
of sources. Note that anyn out of N particles can reside a
these points, and in any order. The relation~32! does deter-
mine the number of possible ways of their arrangement.

Since none of the particles of the system can be at
different points of the space at a time, the number of pecu
points cannot exceed a total number of particles in the s
tem, N. Thus all densities withn.N will be zero, and the
equation forN-particle density will represent Eq.~33! with
its RHS equal to zero;
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S ]

]t
1(

l 51

N Fv( l )
]

]r ( l )
1mwN~r ( l ),t !

]

]p( l )G D
3NN~x(1), . . . ,x(N),t !50. ~35!

This means that whenn5N, all conceivable particles of the
system will be distributed in the peculiar points, and hen
none of the particles will be left in the phase space
sources. The quantitymwN(r ( l ),t) now is a total force, with
which an arbitrary peculiar pointx( l ) is acted upon by exter
nal fields, and by fields produced by all the other (N21)
peculiar points.

Thus, microscopic evolution equations for multipartic
densities is equal to (N11): in addition to the newly ob-
tained Eqs.~33!, ~34!, and~35! it is necessary to include Eq
~22a!, which is left after the termination of the system~12b!.
Equation~35! now has a closed form. Under certain cond
tions, it can be solved, and the determined values of
N-particle density can then be used to find the other dens
by taking advantage, for this purpose, of the following re
tion:

Nn~x(1), . . . ,x(n),t !

5
1

~N2n!! E NN~x(1), . . . ,x(N),t !dx(n11)
•••dx(N),

~36!

where 1<n,N. The relation~36! is readily verified by di-
rect integration. It should be noted that to solve equation~35!
requires a knowledge of the initial value of theN-particle
density that, in turn, requires specifying 6N initial values of
dynamic variables. In real gases, this number is too lar
therefore, the solution of Eq.~35! is impracticable. In this
sense, the microscopic description of a system of partic
using the phase density method does not offer any adv
tages over the dynamic approach@2#. The attractiveness o
Eqs.~33! and ~35! lies in their structure and in the fact tha
they are written in terms of continuous phase variables.
call that the method was developed@1,2,4# for constructing
such a microscopic equation that could be used directly
the procedure of proceeding to an approximate~incomplete!
macroscopic description of the system of particles.

However, the extension of the phase density method
its successive application in this study enabled us to obta
whole system of (N11) microscopic equations rather tha
one equation. Furthermore, their form resembles the wid
known equations of Born-Bogoliubov-Green-Kirkwood
Yvon ~BBGKY!, describing the evolution of an ensemble
systems@2#. Yet our equations differ fundamentally from
BBGKY equations in that they describe the microscopic e
lution of a single particular system ofN particles. Besides
microscopic multiparticle phase densities are determin
quantities, while the generally accepted distribution fun
tions of the probability density are not. Another importa
property of such microscopic equations is emphasized by
following citation from Koga@8#: ‘‘Any experiment is con-
ducted within a finite time interval with a single system
1-7
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VALERY V. YEVSTAFIEV PHYSICAL REVIEW E 64 041201
particles that is not in a state of thermal equilibrium. The
fore, results of measurements are influenced by the evolu
of just this particular system, instead of a ensemble of s
systems.’’ Nevertheless, the presence of the abo
mentioned similarity is indicative of a profound connecti
between the two different levels of description of a system
particles.

In spite of some difficulties, this connection can be re
ized by analogy with a traditional method used by Klimo
tovich, namely, by averaging the microscopic equation o
an ensemble of systems of particles. However, an alterna
procedure is possible, based on the advantages of the
approach used in this study. It implies that any local phys
quantity, characterizing the properties of particles in so
volume of spaceV, is expressed in terms of an integral ov
the space of coordinates, of a particular local function. Us
this determination and a system of microscopic equation
is possible to construct evolution equations for local phys
quantities. It should be noted that the merits of both of th
methods of proceeding from the microscopic to macrosco
description will be determined by the fact that the vario
approximate approaches for solving kinetic equations
tained can be justified in terms of the microscopic desc
tion. We intend to examine all these issues in one of
subsequent papers.

IV. CONCLUDING REMARKS

The main results, and the conditions under which th
have been obtained, may be summarized as follows.

~1! It was assumed that the one-component gas of neu
particles supports only those physical processes that: con
the particles to a certain specified volume of space with
-
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n
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altering the nature of the particles, and conserve their num
N unchanged. The microscopic description of such a sys
of particles was based on the usual local approach of cla
cal mechanics of many bodies.

~2! For an arbitrary motion of particles, characterized bs
dynamic variables (1<s,`), it was necessary to introduc
an extended notion of the 3s-dimensional phase space an
the s-order microscopic phase density specified on it. It w
shown that these particles number phase densities satis
infinite sequence of coupled integrodifferential equations

~3! For such systems of particles, in which there exist
connection between the (p11) dynamic variable of the par
ticle and its otherp variables (1<p,s), this infinite se-
quence of equations is transformed into a closed systemp
differential equations. The same method was applied to
tain the equations for microscopic densities of other phys
quantities.

~4! For a real gas of neutral particles, such a connect
exists, and not only does it correspond to the casep52, but
it contains an additional dependence on the dynamic v
ables of the other particles. Taking this factor into acco
leads us to obtain a system of (N11) differential equations
for so-called multiparticle densities that are now specified
a six-dimensional phase space.
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