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Phase density method: A microscopic description of the gas of neutral particles
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This paper is devoted to the construction of local microscopic equations describing the evolution of the gas
that is treated as a system of a finite numNesf point particles placed in a given fixed volume of space. It is
assumed that, given an arbitrary motion of the particles, the state of each of them is characterized<y a set
(1=<s<x) of dynamic nonzero variables. Such a set represents a point in ssitien@nsional phase space.

The notion of thes-th order phase density is introduced, and it is shown that the hierarchy of densities satisfies
an infinite system of coupled integrodifferential equations. The structure of the equations suggests the condi-
tions, under which they can be transformed to a closed systenuliffierential equations: a functional relation
between the §+ 1)th and the othep dynamic variables must be specified. For the gas of neutral particles,
such a relation is found from ordinary equations of motion of partiglesZ). However, the acceleration of an
individual particle turns out to be a function not only of its coordinates and velocity but also of the coordinates
and velocity of the otherN—1) particles of the system having the role of the field sources. The presence of
an additional coupling leads to the “splitting” of the second of the two remaining evolution equations into a
closed system ofN equations for so-called multiparticle phase densities. The physical meaning of these
equations and their possible implications for the kinetic theory of gases are discussed. It is stressed that a
similar system of microscopic equations can be constructed for any microscopic quantities of the system of
particles under consideration.
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[. INTRODUCTION on its basis, macroscopic results in agreement with univer-
sally known ones, and they took it as circumstantial evidence
The phase density method was first suggested in a papéor the validity of the equation itse[2,6—8. Yet this fact in
of Klimontovich concerned with a local microscopic descrip-no way was associated with the approximation itself: an
tion of the plasma treated as a system of a large numbidr of analysis of their calculations shows that the application of
charged point particles that move according to the knowrithe procedure of averaging the microscopic equation over an
law in a given volume of spackl]. The method is a tech- ensemble, involving the method of moments and various as-
nique for constructing the equation for microscopic phaseumptiong?2], leads to an implicit compensation of the con-
density, which is a local characteristic of the system. It alsdribution determined by self-action. Nevertheless, the idea of
worked well for describing systems of such complicated ob-switching over from microscopic to kinetic equations seems
jects as atoms, molecules, and the like, which were regardeglite attractive. It is necessary merely to derive “correct”
as bound states of point particles of a different $8ft The  microscopic equations and to point out the rule of such a
importance of such equations lies in the fact that kineticswitchover. In this paper, an attempt is made to solve the
equations of a general form can be constructed using thefiormer of these problems.
[2-7]. This treatment starts from the one-component gas whose
It is known that each particle of the system has the role oparticles move in an arbitrary fashion in a given volume of
the object acted upon by the fields of the othNr{1) par- space. Such a motion will be characterized by an infinite
ticles and of externdkelative to the systelrsources, and the number of dynamic variables, which necessitates introducing
role of the field source for the other particles at a time. Toa notion of the 3-dimensional phase space<{s<x), and
obtain the closed microscopic equation, Klimontovich usedf sth-order phase density. The use of an extended phase
the “self-action” approximation implying that a change in density method, based on such properties of particles as their
particle momentum is possible under the action not only ofpoint character and the constancy of their number in the sys-
external(relative to iy fields but also of its own field. Within tem, leads to an infinite system of coupled integrodifferential
the context of the microscopic description of a single systenequations for phase densities. Analysis of the structure sug-
of particles, such an approximation is physically meaninglesgests the condition for “terminating” them and obtaining a
since it introduces divergent terms into the the¢n8]. closed system op differential equations: the presence of a
Knowing that such systems are nonexistent in nature, Klimeoupling between thep(+ 1)th and the othep dynamic vari-
ontovich stresses that his approximation has a technical chagbles. The explicit form of the coupling is determined in
acter and that, when the occasion requires, the contributioeach particular problem.
that is determined by self-action, can always be excluded. As For the neutral gas, such a coupling is defined by the
an illustration, he even develops a “correct,” now nonclosedordinary equation of motiong=2). In this case, the accel-
equation, but right there everything ends. eration of an individual particle depends not only on its dy-
In spite of the approximate character of the microscopicamic variables, as is required by the termination condition,
equation, Klimontovich and other authors managed to obtairhut also on the dynamic variables of the othBr<1) par-
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ticles. The presence of an additional coupling leads to théimet is also equal to the integral of(r,t) taken over this

“splitting” of the second of the two remaining evolution volume, however. It is obvious that, because of the continu-

equations into a closed system Nfequations for so-called ous motion of the particles, the number of particles in this

multiparticle phase densities. Such a systemMf-(@) dif-  volume will be different at different instants of time.

ferential equations describes the microscopic evolution of a To obtain the equation fon(r,t), the density is repre-

single system oN particles rather than of their ensemble. sented as the sum of the following Diradfunctions ovem
particles of the system:

Il. GENERAL SCHEME

N

Let there be, in a fixed volume of spa®é, a sufficient n(r,H)=>, 8(r—r;(t)), 2
amount of gas consisting of a constant numiesf moving =1
particles of the same sdmesults are easily generalized to the
case of a multicomponent gaghe sufficiency implies that Where &(r —r;(t)) = 8(rx—ri(t)) (ry—ryi(t)) 8(r,—r5(t)).
the linear size of the volume is much larger than the mearPuch a representation satisfies the conditnit should be
distance between particles. The constancy of the number éoted, however, that its some terms there can be infinite.
particles signifies that the gas supports only those physicdihis means that in the representati@ the quantityn(r,t)
processes, which as time progresses, (a) do not change tienot @ physical quantity: it belongs to the class of so-called
nature of particles, and (b) confine them to a given volumegeneralized functions. Such functions reflect some preas-
If, in this case, (c) the mean distance between particles i§igned properties of the representing quantity and are intro-
much larger than their diameter, then such a gas may bguc_ed with t.he purpose of constructing the respective differ-
represented as a system of point particles. Their motion i§ntial equations, following the known recipes. In the present
described by methods of classical mechafi;40]. case this implies differentiating the expressi@ with re-

In the dynamic approach, the state of an arbitiginypar- ~ SPect to the timé as a compositétime-dependent in terms

ticle at the timet is determined by the values of two dynamic Of dynamic variablesfunction, in view of the properties of
variables: the radius vectat(t) and the velocityv;(t), (i the o function and the conditioll=const. The terms of the

=TN). It is obvious that they are not independent quantitiesresultlng intermediate equation are then expressed either in

[2]. By specifying the state of all particles at the initial time terms O.f the quaqtltm(r,t) itself or in terms of some other
to and integratingN equations of motion, it is possible, in gel&erflliﬁdtf?nctlon.t t th i Kli tovich d
principle, to calculate the radius vectors of particles for every[h ote that to cor:ls ruc(; € equatlon, _'fr_“‘(’j”.OV'C use
subsequent instant of time. The solution of this problem will e microscopic phase density{r,v,t) specified in a con-

also make it possible to consider the evolution of such physi'Elnuous space of coordinates and velocitiesind v (which

cal quantities as the momentum of the system, its kinetié1e called the six-dimensional phase spamethe expression,
energy, etc., which represent the specified functions of dy-
namic variables oN particles.

The local approach treats the properties not of the entire
system of particles but only of those that at the titng
>1o) are in the volume/ (Ve V*). The correspondingo-  This choice is associated with the assumption that it is pos-
cal) physical quantity then represents a limitéay the vol-  sible to express in terms of the quantit{r,v,t) the micro-
ume V) integral over the coordinate spaceof the local  scopic densities of almost all known physical quantities. In
microscopic function. Functions of this kind are determinedorder for the resultant internal force to be included in their
by the condition that in the limivV—V* the local physical number, the self-action approximation was used, the mean-
quantity coincides with the quantity obtained in the dynamicing of which has already been discussed above. Eventually
approach. For local functions, a method of constructing difthe resulting differential equation foN(r,v,t) becomes
ferential equations, the phase density method, is kn@¥n  closed. This study will show that there is no need for such an
The evolution of local physical quantities is studied either onapproximation and that a consistent application of the phase
the basis of their determinatiofipy substituting into it the density method permits us to construct microscopic equa-
solution of the microscopic equatipror through a direct tions. Furthermore, there naturally arise the notions of micro-
construction and solution of differential equations for thesescopic densities of different physical quantities, and differ-

quantities themselves. ential equations corresponding to them.
The simplest local function is represented by the micro-

scopic particles number density(r,t), specified in a con-
tinuous space of coordinates by the condition

N
N(r,v,nsgl S(r—ri(1)8(v—v;(t)). 3)

A. The coupling equation for phase densities

It will be assumed that the motion of particles in the sys-
tem under consideration proceeds in an arbitrary fashion, i.e.,
Jv*n(r,t)dr:N, @ the laws of their motion are not predetermined. This means
that for anyith particle {=1,N) the time derivatives of its
i.e., the integral oh(r,t) over the entire volume of the sys- radius vector from the first to infinite orders will be nonzero
tem is equal to a total number of particles in it, hehe  time functions. We write them as the following vector
=dr,dr,dr,. The number of particles in the volunweat the  quantities § being an integer, and<ts<«):
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dri(t)
qui(t)=ri(t), q2i(t):Vi(t)ETr ooy Qgi(t)
d*tri(t)
- 7 4
des=t @

and we call them the dynamic variables of thb particle
[2]. It is obvious that they are not independent quantities
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Next we write the following useful coupling between phase
densities of different ordersr (being an integer, and<ir
<s):

nr:J Nsdd+1- - - dQs. (10

We start the construction of the equations for phase den-
sities from the quantity;. By taking a time derivative with

The first subscript number means the variable number, andespect to its both parts and using the known property of

the second number corresponds to the particle number.
would appear reasonable that the state of an individual pal

tifferentiation of thed function, we obtain the following
intermediate equation:

ticle must now be characterized not by two dynamic vari-

ables but by the entire set efdynamic variables,

Qsi(t) =T[4 (1), az(t), . Osi(D]. 5

an,

P
T ;1 0ai(1) (A1 —qi(1)). (113

The presence of the vectgg;(t) under the summation sign

It will be shown later in the text that, depending on the lawdoes not permit the right-hand sid@HS) of Eq. (113 to be

of motion selected, the numbsican assume different finite
values.

Let us imagine mentally somesdlimensional continuous
space in which at the timeone particular point that is dif-
ferent from the other points, will correspond to each oflkhe
sets of the dynamic variables of E@). Call this space the
phase space, and let the followisgvectors be used as its
independent variables

q1= (6)

r! q2:V| q3| L] qS’

expressed in terms of the quantity itself. However, if the
definition(8) ats=2 and the other property of th&function

0= | 42000~ a(0)dg;,

are taken into account, then equatiqi$a may be written
as

an,

a o)
i a_(qlf_qunquz' (11b

where the subscript number means the phase variable num-
ber. It is obvious that the phase and dynamic variables witiThis integrodifferential equation is nonclosed: its RHS in-
the same number have the same physical dimensions. In thiglves the density,, for its determination it is necessary to

connection, the first two vectors in E) are shown coin-
cident with the variables of an ordinary six-dimensional
phase spacgl]. With the exception of the variablg, the
phase variables of Eq6) vary from — to +o. (In the
relativistic case this exception refers also to the variables
values vary from-c to +c, wherec is the velocity of lighj.
Let us designate an arbitrary point of the-8imensional
phase space by the set
Qs=(d1, Gz, 5 0s)s (7)
where the subscript number @ indicates the number of
phase variables. By analogy with E¢8) and(3), we deter-
mine in the 3-dimensional phase space th@rder phase
density

N
ns=ns<Qs,t)=§l 8(Qs— Qsi(1)), (8)

where 5(Qs— Qsi(t))=TI;_, 8(q,—qi(t)). Then the quanti-
tiesn(r,t) andN(r,v,t) are said to be the phase densities of
the first and second orders. All phase densities are local fun
tions since they satisfy the condition

[ ngo=[ [ ngodaen @

construct a new equation. It is obvious that this and all other
subsequent equations are nonclosed. A general equation for
the s-order phase density will have the form

P J PR
ﬁﬂ; q m) Ns=— 90 ;1 Qs+ 1)i (1) 9(Qs— Qsi(1))
(129

19 <)
== a_%jooqs+1ns+ldqs+la
(12b

where 2<s<o [whens=1 we have Eqgs(11)].

Equationg11b) and(12b) have an important property: all
their terms represent different combinations of phase vari-
ables and phase densities only. The system with an infinite
number of “coupled” integrodifferential equatiori12h)
does not permit us to use them in solving applied problems.
It is necessary to point out a method enabling us to “termi-
nate” the sequence of these equations. To do so, first we
note the existing obvious connection between the number of
Eq. (12b and the number of dynamic variables. Note also

%hat in real media the motion of particles is not an arbitrary

one: it is always limited to some extent. Consequently, by
establishing the character of limitations for a particular sys-
tem of particles, it is possible to find the method of termina-
tion of Eq.(12b) and to obtain a closed system of equations.
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An important role will be played by thes{ 1)th dynamic o
variable of an arbitraryth particle involved in the RHS of f_mqk”deIk: Ui(Qi-1,1), (19
Eqg. (1239.

Assume that the particles in the system are moving invhere 2<k<p. It is obvious that the vectod, is a local
such a manner that their dynamic variables with numbersunction and represents the density of quantify in the
higher than thepth are always zero, i.egq+1=0 (i 3(k—1)-dimensional phase space. Let the symiell,2,3,
=1,N). Upon substituting this into the RHS of Ed.29, we  involved on the lower right of the vector, designate its Car-
obtain a closed system pfequations. The last of them turns tesian components. Then, by multiplying edadh of the (o
out to have its RHS equal to zero. It is known that under—2) Eq.(12b), as well as Eq(14) by the quantity ), and
certain conditions and at the specified initial value of theintegrating overq,, we obtain the following system gb
p-order phase density, this equation can, in principle, bamicroscopic equations:
solved. The resulting expression figg can be used, with the -1
help of the relation(10), to determine smaller-order phase 2 d d * d
densities. However, there are situations where it is still nec- | gt G5g a0, ( plat 90y 1 _wqp(qp)anp A
essary to successively solve all the remainipg-(L) equa-
tions. To do this, the resulting value of is substituted into
the RHS of the precedingp(1)th ec%uation, and this is :f_x[f(QP’t)]anpqu’ (163
solved forn,_;. Its solution, in turn, gives, 4, which is
substituted into thed— 2)th equation, and so forth. It should
be noted, however, that the case of the motion of particles ( E q— ) Upat f Ak(Ak) aNkd g
under consideration exists almost nowhere; therefore, we - 99~ 9%k~
turn our attention to a more general method of obtaining a

closed system of equations. =f (Uks1)2day, (16b
B. The evolution equation for phase densities an, U,
Assume that the motion of particles in the system obeys ot a_(ql (169

such a physical law that may be written as the following

relation between the dynamic variables of an arbitrahy ~ When deriving Eq.(16), we used the following important
particle: property of the integrals:

. T |
q(p+1)i(t):f(Qpi ,t), i=1,N. (13) f ﬂ[‘lf(Qk,t)nk]quZO, (17)
- k
Noteworthy here is an explicit time dependence of the RHS.
Upon substituting Eq(13) into Eq. (129 and taking advan-
tage of the property

where the vecto®’ (Q,,t) is an arbitrary function of phase
variables. Note that the systeffhi6) involves terms that do
not contain the quantity, . They arise due to the fact that
the relation (15) does not permit the densities, to be

f(Qpi 1) 8(Qp— Qpi(1))=F(Qp 1) 8(Qp— Qpi(1)) uniquely expressed in terms bk, . For this reason, when it

is necessary to find the expressions y, it is more con-

(it is verified by a direct integration over the phase volume ofvenient to solve first the system of equations for phase den-
the system we arrive at the following closed differential sities and then to use E(L5).

equation: There exists an alternative method of overcoming the
above-mentioned problem of introducing new local func-
9 P P P tions. Using Eq(8), we represent the quantity, as
((91: ql aq ) p: - é,_qp(f(Qp!t)np) (14) N
Uk:; ki 0(Qk—1— Qk—1)i(1)) (183
Since the coefficients of the equation represent the known
functions of phase variables, this equation can, in principle, =U(Qy_1,t)Ny_1, (18b)
be solved. Smaller-order phase densities are then obtained
using the relatior(10). where 2<k<p. We can verify that by applying the phase

This does not complete the microscopic local descriptiordensity method to Eq18a, we obtain exactly the system of
of the system of particles: it is still necessary to consider theequationg16). It is easy to see that by using this method it is
above-mentioned problem of introducing into the theorypossible to construct microscopic equations for any local
other local functions and of constructing the evolution equafunction composed of phase variables and of the phase den-
tions for them. One way to solve this problem is as follows.sities. By representing the integral of E@5) as Eq.(18b), it
Since Egs.(12b) involve integrals of the same type, they is possible to introduce into consideration a further new
may be represented as the following functions: quantityu,(Qy_1,t), having the meaning of the mean value
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of the variableg, in the 3(k— 1)-dimensional phase space. cal bar will separate the parameters of the peculiar particle
Let us call it the microscopic value of the quantify. In the ~ and of the source particles. Than;(t) =®(|r;(t) —r;(t)[)

particular case wherle= 2, substitution of Eq(18b) into Eq. =@ (ri(t)|r;(t)), and
(160 gives the equation coinciding in its form with the mac- b, (1)
roscopic continuity equation. The quantity(Qq,t) will Fi(H)=— ij =F(ri(t)|rj(t)), (i#)). (21

have the role of the microscopic value of the veloatyin ari(t)

this equation. . . .
. Hence it follows that the time dependence of the internal

forces has an implicit character, and the parameters of the

[ll. THE GAS OF NEUTRAL PARTICLES source and of the peculiar particle are taken at the same time
t. However, with the finite propagation velocity of the fields,
the time of emission of the field by thjgh particle,tj’ must
differ from t by the delay timet—tj’>0. The use ot:tj’ in
the expressiori21) is motivated by the short-lived character
of the field®;;(t) when at every instant of time the peculiar
particle is acted upon by fields only of several most closely
m;gsi(t) =F;(t), (19 lying source particles. Furthermore, the delay time will be
negligibly small compared with the characteristic time of the
macroscopic processes occurring in the system. It should be
noted that the delay times can differ from each other by
several times, and this difference does not depend on the
velocity of the particles. It is particularly important to take
this difference into account in the microscopic description of
the gas of charged particles acting on one another through
rgar—ranging electromagnetic fields. The delay times for them
can also differ considerably.

Thus the acceleration of the peculiar particle depends not

In real gases the motion of particles is almost always non
relativistic and therefore obeys a classical law of motion
[2,9,10. For an arbitraryith particle §=1,N) of the one-
component gas, it is written as

whereqs;(t) is acceleration, and),=m is the mass of the
ith particle. The vectoi,(t) represents the force arising
when theith particle(at the timet) is acted upon by the total
field produced both by N—1) particles surrounding this
particle and by externdtelative to the systejrsources. Re-
call that the motion of the particles will be nonrelativistic
and the particles themselves will remain point objects whe
the magnitude of each field acting on them is sufficiently

small. The superposition principle hold for such fields: the . ) : ) . o
action of the total field causes the same change in particl nly on its dynamic variables, as is required by the condition

momentum as does the vector sum of all individual fields. 13), but also on the variables Qf_ the other_particles of the
The same holds also true for the forces system. The presence of an additional coupling does not per-

mit the results from the preceding section to be used directly;
therefore, it is necessary again to invoke the system of equa-

N
tions (12b). Using Eq.(19), we transform it into a system of
Fi(t)=Foi(t) + le Fij (). (200 two equations
(1#1)
an(r,t) d (=
] =— —f VAN (X,t)dv, (22a
Here Fq;(t) andF;;(t) represent the actions of the resultant Jt ) —

field of external sources, and of the field produced byjthe
particle, respectively. The conditiar j implies that thath d d PR
particle of the system cannot be a source of the field for St Vo Ni(x,t)=— ey, Z’l 0i (1) S(x—xi(1)).
itself. In emphasizing this role, we shall call the particle (22b)
whose parameters are related by Efp), the peculiar par-
ticle; with respect to it, all the otheN—1) particles repre- We now write Eq.(22b) in the variables of the phase space;
sent sources of internal fields. It should be noted that théo do this, we represent the force of E&1) as an integral
selection of the law of motiofil3) in the form(19) specifies  over the entire volume of the phase space occupied by the
the phase space of the system of particles to be sixsystem:
dimensional. This permits us to return to the symbols that
have already been partly used in Sec. Il: the vectgrand _ - , ;L ,
g, are replaced by andv and the quantities;, n, [see Eq. Fij (0= fv* f_wF(r‘(t)“ YO =x;(t)dx’, (23
(8)] are substituted for by(r,t), N;(x,t)=MNr,v,t) where
x=(rv). wheredx’=dr’dv’. On substituting into Eq(22b) the ex-

In particular problems, the sources of external fields argression(19), in view of Egs.(20), (21), and(23), we arrive
considered given. This implies that the external resultanat the following evolution equation for the densif; (x,t):
force may be represented as a radius-vector function of the

peculiar particle and of time (if external sources produce Jd - d J

time-dependent fields Fg;i(t)=Fq(r;(t),t). The internal <E+V§+F0(r’t)a_p Ni(x.1)

force Fy;(t) for the neutral gas is expressed in terms of the () or

“potential energy of interaction"®;;(t). In the subsequent _ _f Frle) INT(X, DNV (X ’t)dx’ (24
discussion, in the expressions for fields and forces the verti- ap '
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The integral here is written in the sense of E28), p=mv, x" are formally considered to be two different and indepen-
andF(r|r’) stands for the force, with which the field from dent peculiar point§When the occasion requires, the differ-
the source particle will be acting on some peculiar particlegnce of the times$ andt’ may be taken into account in Eq.
provided that both of them will be at the pointandr’. (24) in the process of integratiohHence,

At this point it is necessary to explain that the poinlike
any other point of the phase space, is chosen arbitrarily;
therefore, at the timéthis point may not contain a particle.
Nevertheless, Eq24) remains valid, although it turns into a
usual zero identity. Consequently, the nontrivial meaning is J
acquired by Eq(24) only at the point of the phase space, at = —f F(r|r”)%[N(X)(x",t)/\/z(x,x’,t)]dx”
which at the timet one of N particles will reside. Such a

(9+a+"9+F t&+F ’ta/\/ "t
T Var Vo O(r’)ap o(r,)ﬁp, 2(X,x",1)

point will be said to be the peculiar point of the phase space 9 )
and, in this sense, we make the convention that there is an —J F(r’lr”)—,[J\/'(X J(X" HNL(x,x',1)]dX".  (28)
action of the fields on the peculiar point. ap

Note that under the integral in ER4) we have, together

with A(x.1), @ new quantity Noteworthy are the similarity of the operators involved in the

left-hand side(LHS) of Egs. (24) and (28), and the corre-
NOX =Ny (X' 1) = S(x—x'), (25) spondence of their number to the number of peculiar points.
The integrals in Eq(28) describe the contribution to the
which differs from A (x’,t) in that the peculiar poink is  €volution made by the quantity>(x,x’,t) made by the mu-
excluded from it. This imparts to the quantity of Eg5) the  tual action of the peculiar pointsandx’, as well as of the
meaning of the phase density of the number of souffrs  action of particles from the phase space of sources on them.

the pointx) at the pointx’. It is obvious that it is a local We now express the bracketed products of phase densities
function: the integral in terms of a three-particle phase dengitf. Eq. (27)]
N
f NP Hdx' =N-1, (26) Na(x,x" X" t)= | J-%l S(x—x;(1))8(x" —x;(t))
(1£i#k)

is equal to the number of sources for the peculiar p&int "
The fact that the quantity{(x’,t) involved in Eq.(24) X O =xi(D)). (29)
makes it nonclosed; however, the evolution equation reyyith a rather unwieldy manipulation we get

quired for finding this quantity is more conveniently con-

structed for the product NOX" NH(x, X", 1) =N3(x,x", X" 1)

N OGHN (X ) =No(x,x 1) + (X" = X" )N(x, X", 1),

N ’
, N(x) H,t N , ,,t :N ; r, H,t
= 3, x50 =x(1). PODNOCHZALGA0
(1#1) + (X" = X)NL(x, X' t).

(27) In view of these expressions, E@8) takes the form

If only the RHS of Eq.(27) is taken into account, then the 5 5 5 5
quantity AV,(x,x’,t) represents a function that is symmetric (2 % ., 7 "1
with regard to the permutation of the variableandx’. For at +Var v ar' *[Fo(rt)+F(r|r )]ap
this reason, it was labeled as the two-particle phase density,
and the quantityNV;(x,t) received the name one-particle d
phase density2]. +[Fo(r’,t)+ F”’“”;
On the other hand, since in E(@4) x is a peculiar point P
and the poink’ belongs in the phase space of sources, these f

No(x,x",t)

points have a different physical meaning. This difference be- =
comes obvious if we take into account the nonzero, even if
negligibly small, delay time. In this case the poirtandx’ (30)
become “tied” to the timeg andt’, with t>t’. In the sub-

sequent discussion the delay will be neglected; howeveiThe LHS now involves two terms that take explicitly into
when carrying out a physical interpretation of results ob-account the contribution of the mutual action of the peculiar
tained, it should not be omitted. We believe that this remarkpointsx andx’ to the evolution of the quantits(x,x’,t).

is of particular importance in the context of the well-known The RHS retains only those terms that describe the contribu-
problem of the time irreversibility of kinetic and hydrody- tion from the action(on these poinjsof the fields from the
namic equation$2,11]. Nevertheless, in obtaining the evo- remaining (N—2) particles of the system. Equatid0),
lution equations for the quantity/,(x,x’,t), the pointsxand  like Eqg. (24), is also nonclosed, but now because of the in-

N3(x,x" X", t)dx".

n (9 ! n (9
F(r|r )a_p+F(r [r )ﬁ_p’
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volvement of the quantityV(x,x’,x”,t). It is obvious that g N 9
the evolution equation for this quantity will contain a four- 5t Z V(')TﬂLmWN(f(') t)—= 0
particle density, etc. As a result, we get a system of coupled B ol ap

equations for multiparticle phase densities. XN(x®, . xMN =0, (35)
The need to distinguish, in the subsequent treatment, a

large number of points of the six-dimensional phase spac

induces us to introduce the following designations of the,

phase variables:

Fhis means that when= N, all conceivable particles of the
system will be distributed in the peculiar points, and hence
none of the particles will be left in the phase space of
wex(D oy —x@ gy @ (31)  sources. The quantitgnwy(r”,t) now is a total force, with
’ ’ ’ which an arbitrary peculiar point") is acted upon by exter-
It can be directly verified that the properties of mparticle  nal fields, and by fields produced by all the oth&r<1)
phase densityfas a local functionwill be defined by the peculiar points.
relation Thus, microscopic evolution equations for multiparticle
densities is equal toN+1): in addition to the newly ob-
N! tained Eqs(33), (34), and(35) it is necessary to include Eq.
J Nox®, o x® ) dx®- - - dx = (N—n)!" (32 (229, which is left after the termination of the systédRb).
Equation(35) now has a closed form. Under certain condi-
Hence, when £n<N (n being an integer the evolution tions, it can be solved, and the determined values of the

equation has the form N-particle density can then be used to find the other densities
by taking advantage, for this purpose, of the following rela-
R d tion:
_ (l)_ (M
pn Z +mwn(r H— p(')])

Ny(xD, o x g
Ny(x®) o xM 1)

! J
_f 2 F(r(|)|r(n+1))_
& 7p0

X Npp (X, 0 x(FD Hdx(+ D (33

1
ZWJ' NN(X(l), . ,X(N),t)dx(nJrl). . .dx(N),
(36)

where I=n<N. The relation(36) is readily verified by di-
rect integration. It should be noted that to solve equaiBih

where, for sake of evidence, the following notation is intro- . o .
9 requires a knowledge of the initial value of tiNeparticle

duced: . . . o "
density that, in turn, requires specifyingN@nitial values of
n o dynamic variables. In real gases, this number is too large;
mw,(r®,t)=Fo(r®,t)+ 2 FrOr®y,  1=1,N. therefore, the solution of Eq35) is impracticable. In this
(k#) sense, the microscopic description of a system of particles

(34) using the phase density method does not offer any advan-
tages over the dynamic approadi. The attractiveness of
Equation(33) will have a nontrivial meaning if equals the Egs.(33) and(35) lies in their structure and in the fact that
number of peculiar points. The expressi@d) represents the they are written in terms of continuous phase variables. Re-
portion of the force, with which an arbitrary peculiar point call that the method was developgt 2,4 for constructing
x() at the timet is acted upon by external fields and by fields such a microscopic equation that could be used directly in
produced by the othem(—1) peculiar points. Consequently, the procedure of proceeding to an approxim@ieomplete
the LHS of Eq.(33) involvesn terms that take into account macroscopic description of the system of particles.
the contribution to the evolution from theparticle density However, the extension of the phase density method and
of the external fields, and(n—1) terms that take into ac- its successive application in this study enabled us to obtain a
count the mutual action of the peculiar points. Under thewhole system of ll+1) microscopic equations rather than
integral sign on the RHS of Ed33) there remaim terms  one equation. Furthermore, their form resembles the widely
that take into account the action on each of thpeculiar  known equations of Born-Bogoliubov-Green-Kirkwood-
points (N—n) exerted by the particles from the phase spacervon (BBGKY), describing the evolution of an ensemble of
of sources. Note that any out of N particles can reside at systems[2]. Yet our equations differ fundamentally from
these points, and in any order. The relati@2) does deter- BBGKY equations in that they describe the microscopic evo-
mine the number of possible ways of their arrangement. lution of a single particular system & particles. Besides,
Since none of the particles of the system can be at twanicroscopic multiparticle phase densities are determinate
different points of the space at a time, the number of peculiaquantities, while the generally accepted distribution func-
points cannot exceed a total number of particles in the sysions of the probability density are not. Another important
tem, N. Thus all densities witm>N will be zero, and the property of such microscopic equations is emphasized by the
equation forN-particle density will represent Eq33) with  following citation from Koga[8]: “Any experiment is con-
its RHS equal to zero; ducted within a finite time interval with a single system of
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particles that is not in a state of thermal equilibrium. There-altering the nature of the particles, and conserve their number
fore, results of measurements are influenced by the evolutioN unchanged. The microscopic description of such a system
of just this particular system, instead of a ensemble of suclef particles was based on the usual local approach of classi-
systems.” Nevertheless, the presence of the abovecal mechanics of many bodies.
mentioned similarity is indicative of a profound connection  (2) For an arbitrary motion of particles, characterizedsby
between the two different levels of description of a system ofdynamic variables (£s<), it was necessary to introduce
particles. an extended notion of thes3dimensional phase space and

In spite of some difficulties, this connection can be real-the s-order microscopic phase density specified on it. It was
ized by analogy with a traditional method used by Klimon-shown that these particles number phase densities satisfy an
tovich, namely, by averaging the microscopic equation oveinfinite sequence of coupled integrodifferential equations.
an ensemble of systems of particles. However, an alternative (3) For such systems of particles, in which there exists a
procedure is possible, based on the advantages of the locebnnection between the @ 1) dynamic variable of the par-
approach used in this study. It implies that any local physicaticle and its otherp variables (kp<s), this infinite se-
quantity, characterizing the properties of particles in somejuence of equations is transformed into a closed systegmn of
volume of space/, is expressed in terms of an integral over differential equations. The same method was applied to ob-
the space of coordinates, of a particular local function. Usingain the equations for microscopic densities of other physical
this determination and a system of microscopic equations, juantities.
is possible to construct evolution equations for local physical (4) For a real gas of neutral particles, such a connection
quantities. It should be noted that the merits of both of thesexists, and not only does it correspond to the qase, but
methods of proceeding from the microscopic to macroscopiit contains an additional dependence on the dynamic vari-
description will be determined by the fact that the variousables of the other particles. Taking this factor into account
approximate approaches for solving kinetic equations obleads us to obtain a system dfi¢-1) differential equations
tained can be justified in terms of the microscopic descripfor so-called multiparticle densities that are now specified on
tion. We intend to examine all these issues in one of oul six-dimensional phase space.
subsequent papers.
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